Plan Overview

A Data Management Plan created using DMPTool

Title: LoRa Quake - An Emergency Mesh Network to Locate the Victims in Disaster Scenarios

Creator: SAHIN, ALPHAN - ORCID: [0000-0002-4857-413X](https://orcid.org/0000-0002-4857-413X)

Affiliation: University of South Carolina (USC) (sc.edu)

Funder: National Science Foundation (nsf.gov)

Funding opportunity number: PD 18-7564

Grant: https://new.nsf.gov/funding/opportunities/communications-circuits-sensing-systems-ccss

Template: NSF-CISE: Computer and Information Science and Engineering

Project abstract:

The recent disasters occurring across the globe in 2023, such as the Turkey–Syria Earthquake, the Hawaii wildfires, and the Libya Floods, have repeatedly shown that today’s communication technologies designed for high data rates are insufficient when we need them the most. Most importantly, they are inefficient in locating the victims in emergency scenarios in a timely manner. To significantly reduce our losses in the future, we need a new generation and unique communication and sensing technology. In this regard, the overarching goal of this project is to build a large-scale mesh network that can work in very harsh conditions, communicate and locate the victims, and provide situational awareness to the first responders and a framework for sensing the potential hazards before they occur. Instead of an external wireless system, this project proposes deploying many devices (in particular, Long-Range (LoRa) nodes) to the buildings, the existing infrastructure, and many personal nodes. In particular, these nodes and the devices deployed by the first responders will form a mesh network to allow first responders to establish timely contact with the victims. The nodes will exploit the computing and sensing power of the smart devices while being capable of sensing the environment and locating themselves without
Global Positioning System (GPS) signals.

Start date: 08-01-2024

End date: 08-01-2027

Last modified: 12-16-2023

Copyright information:

The above plan creator(s) have agreed that others may use as much of the text of this plan as they would like in their own plans, and customize it as necessary. You do not need to credit the creator(s) as the source of the language used, but using any of the plan's text does not imply that the creator(s) endorse, or have any relationship to, your project or proposal.
LoRa Quake - An Emergency Mesh Network to Locate the Victims in Disaster Scenarios

Types of data

The Data Management Plan should describe the types of data, metadata, scripts used to generate the data or metadata, experimental results, samples, physical collections, software, curriculum materials, or other materials to be produced in the course of the project.

(1) Link-level and system-level data: In this category, MATLAB and its toolboxes (e.g., Communications Toolbox, Deep Learning Toolbox available at no additional charge to NSF) and Python-based scripts will be utilized to assess the mesh network, positional awareness, and sensing performance described in the project description. The obtained data at this level include MATLAB and Python scripts in the form of .m, .mat, and .py files. The data will include mesh communication performance metrics (e.g., packet-delivery and collision rates and synthetic in-phase and quadrature data), sensing-related data (e.g., audio recordings and temperature), and localization data (e.g., ranging between nodes and coordinates acquired from GPS signals). The wireless channel models and hardware impairment for the simulations will be made available in the MATLAB scripts. MATLAB, PyTorch, and TinyML will be utilized to obtain the semantic information or inference for sensing. The data generated at this level can include neural network topology and weights that will be captured as text files. We will use Swift and Xcode to develop apps on smart devices. The obtained data in this category will be utilized to create the materials, e.g., plots and tables, for presentations, technical documents, papers, and course contents.

(2) Hardware-level data: To program LoRa modules, we will use Visual Studio Code and PlatformIO, and the generated files will be .cpp or .h files. For Adalm Pluto software-defined radios, we will acquire/generate the IQ data in MATLAB, Python, and GNURadio for spectrum monitoring. If we need to modify the FPGA of Adalm Pluto SDRs, the MATLAB HDL coder toolbox will be utilized to generate FPGA codes. We will use KiCad, a free software suite for designing and simulating the electronic hardware for PCB manufacturing, to develop the daughterboards for mesh connectivity and sensing. The software will generate Gerber and drill files. We will record the milestones and demonstrations as .avi or .mpeg files.

Data and metadata standards

The Data Management Plan should address the standards to be used for data and metadata format and content (where existing standards are absent or deemed inadequate, this should be documented along with any proposed solutions or remedies). It should also cover any
other types of information that would be maintained and shared regarding data, e.g. the
means by which it was generated, detailed analytical and procedural information required
to reproduce experimental results, and other metadata.

The generated data (scripts, course materials, application files, papers) will be made available in
standard, accessible formats such as mat, py, xlsx, cpp, h, docx, pdf, txt, m, xls, tex, jpg, png, mp3,
v, vhdl, avi, mpeg. These formats were selected because they correlate with the current industry
standards for computer software frameworks. The information about the type of software used to
access and analyze the data, obtain results from data, and prepare graphics will be stored along with
the data in repositories associated with each publication.

Policies for access, sharing, and privacy

The Data Management Plan should address the policies for access and sharing including
provisions for appropriate protection of privacy, confidentiality, security, intellectual
property, or other rights or requirements. It should cover any factors that limit the ability to
manage and share data, e.g. legal and ethical restrictions on access to human subject data.

The project aims to provide access to the data by those who require the materials by sharing a
project’s website’s specific link on Google Site, YouTube, and GitHub. The project data will be
accessible publicly to the researchers upon request. They will be made available through the
proposed project website. This project does not contain any factors that limit the ability to manage
and share data, e.g., legal and ethical restrictions on access to human subject data.

Policies for re-use, re-distribution, derivatives

The Data Management Plan should address the policies and provision for re-use, re-
distribution, and the production of derivatives.

The reusability of the material will be ensured through rigorously written technical reports,
conference papers, journals, and patents. The simulation codes, PCB layouts, and schematics will be
shared through GitHub under the project repository for the replicability of the results. The datasets
will be made available on IEEE Dataport. Data items produced may be subject to copyright per
established policies of NSF and the publishing entity of the conference/journal contents.

Plans for archiving and preservation

The Data Management Plan should address the plans for archiving data, samples, and other
The Data Management Plan should address the plans for archiving data, samples, and other research products, and for the preservation of access to them. It should cover the period of time the data will be retained and shared; how data are to be managed, maintained, and disseminated; and mechanisms and formats for storing data and making them accessible to others, which may include third party facilities and repositories.

Archives on Dropbox will be updated quarterly. Upon project completion, zip files of complete information will be archived internally at the University of South Carolina, along with versions of the development tools used to create them so that they may be accessed later, as needed. Moreover, related information to the project will continue to be deposited, including reports, budgetary information, expenditures, audit trails, supporting authorizations, and compliance documents on the USC research website. This data is maintained indefinitely for record-keeping purposes.

Additional Guidance on Selecting or Evaluating a Repository:

The following questions are intended to assist PIs and panel members to prepare Data Management Plans and to evaluate them during merit review, respectively. The questions are sequential, that is, if (1) applies, then the remaining questions are irrelevant unless (2) also applies or the PI chooses to deposit the data or software in multiple repositories. The more detailed questions, (4)-(6), apply if (1) and (2) do not.

1. Does the solicitation specify a repository for the data or software?
2. Does the PI's home institution have an institutional repository that mandates local deposit of the data/software?
3. Is there a discipline-relevant repository used by the research community either as the expected repository for data/software or as the expected repository for discovering and reusing data/software?
4. Is the repository sustainable? And if not, are there contingency plans?
5. Does the repository require at least minimal identification and description of the data product sufficient to enable discovery, access, and retrieval? For purposes of data citation, NSF requires a persistent identifier and some level of metadata including acknowledgment of the creator/author and federal support.
6. Has the PI made any contingency plans in the event a designated repository becomes unavailable?

Roles and responsibilities

The Data Management Plan should clearly articulate how the PI and co-PIs plan to manage and disseminate data generated by the project. The plan should outline the rights and
obligations of all parties as to their roles and responsibilities in the management and
retention of research data, and consider changes that would occur should a PI or co-PI
leave the institution or project. It should describe how the research team plans to deposit
data into any relevant and appropriate disciplinary repositories that are appropriately
managed and that are likely to maintain the metadata necessary for future use and
discovery. Any costs associated with implementing the DMP should be explained in the
Budget Justification.

The PI will disseminate the outcomes of this project on a public webpage on Google Sites and
YouTube to share the exciting outcomes of the project in the public domain. The website will
include three main sections: (1) Research level (mesh network formation, positional awareness, and
sensing) (2) Hardware and simulation level (outlining how to build the prototype discussed in the
project description, access sensing data, and perform simulations theoretically), and (3) Outreach
(demonstration videos and installation manuals). The PI will manage and retain research data for all
sections.

PI's graduate students will each have their dedicated storage capacity in the project repository. To
manage the research data and avoid possible data loss due to miscommunication, only the PI will
have access to the entire repository, and only the graduate students will have access to their storage.
Like the website, the project repository on GitHub will be categorized into the three sections
mentioned above. PI will maintain the metadata necessary for future use and discovery. The data
management plan will be implemented at no additional charge to NSF.