Overview: The goal of this project is to create a modern and innovative cross-disciplinary training program at NJIT built on the idea that mathematics is a fundamental tool for understanding biology and at the same time, biology is a source of original mathematical problems. The former, more classical side of this mutual relationship focuses on applying existing mathematical tools to address biological issues. The other side, the one we aim to achieve, focuses on creating “new mathematics” to describe biological data and explain the mechanisms and biological processes underlying the generation of these data. To achieve this goal, we propose to provide a type of training where cross-disciplinary research is not simply seen as the interaction of two different activities but as the concerted activity of experimental design, data collection, and theory/modeling creation where mathematics plays a fundamental role in all of these aspects in a given biological context. To this end, we will establish two vertically-integrated research groups in computational neuroscience and collective behavior, composed of mathematical sciences trainees from the community college level up through
the postdoctoral level that will be co-mentored by faculty members in mathematical sciences and biological sciences. These working groups will address different biological scales but share a cohesive focus on data-driven mathematical modeling, dynamical systems theory, stochastic processes, and scientific computation. Associated with these working groups, we will take the following actions: (1) create a new Mathematical Biology Option within the Applied Math Track of our PhD program featuring extensive new curriculum development and research rotations in both mathematical groups and biological labs and; (2) host an annual Summer Research and Professional Development Academy that will provide undergraduates with authentic interdisciplinary research experiences, training in scientific writing, and exposure to the industry while also affording graduate students a mentored teaching opportunity; and (3) organize annual 3-day Hackathon-Style Collaborative Workshops in Computational Neuroscience & Collective Behavior designed to foster novel collaborations between mathematicians and biologists and provide networking opportunities and enhanced career prospects for RTG graduate students and postdocs.

Intellectual Merit: The working groups will advance the understanding of how system components (cells in a neuronal network or organisms in a shared environment) interact to generate functional behavior at higher levels of the organization. Knowledge will be created on (i) how to identify interaction rules from data, (ii) how to model them dynamically, stochastically and statistically, (iii) how to estimate model parameter values from data, (iv) how to simulate the models, compare the simulations to data and modify the models accordingly, (v) how to analyze the data and, more generally, how to compatibilize both the models with the data and the different modeling approaches (dynamic, stochastic, statistical) among themselves.

Broader Impacts: This project will increase the number of minority students pursuing undergraduate and graduate degrees in mathematical sciences through partnerships with the GS-LSAMP and NNJ-B2B programs at 7 universities and 5 community colleges in New Jersey that are dedicated to increasing the retention, graduation, and success of students from racial and ethnic groups that are historically underrepresented in STEM fields. This project will increase the number of female students pursuing undergraduate and graduate degrees in mathematical sciences through partnerships with the Murray Center for Women in Technology and the Albert Dorman Honors College at NJIT. This project will equip students and postdoctoral associates with the transdisciplinary skills to tackle some of society’s most complex challenges.

Start date: 05-01-2024

End date: 04-30-2029

Last modified: 08-02-2023

Copyright information:

The above plan creator(s) have agreed that others may use as much of the text of this plan as they would like in
their own plans, and customize it as necessary. You do not need to credit the creator(s) as the source of the language used, but using any of the plan's text does not imply that the creator(s) endorse, or have any relationship to, your project or proposal.
Publication

Investigators are expected to promptly prepare and submit for publication, with authorship that accurately reflects the contributions of those involved, all significant findings from work conducted under NSF grants. Grantees are expected to permit and encourage such publication by those actually performing that work, unless a grantee intends to publish or disseminate such findings itself.

Primarily, the proposed work will generate model data. Mathematical models produced for the purpose of mathematical analysis and numerical simulations will be described fully and included in refereed publications. Codes will be made available to other researchers by depositing them on GitHub and ModelDB (a curated database of published models in computational neuroscience). The dissemination of the model code will comply with the New Jersey Institute of Technology policies governing intellectual property, copyright, and the dissemination of research products.

The project will also generate experimental data, which will be managed as described below. The sub-award organization, Essex County College, will not generate data on their campus. Essex County College students, as well as RTG participants from other institutions, will be granted access to NJIT data and computer systems in accordance with university policies on security.

Data types and privacy

Investigators are expected to share with other researchers, at no more than incremental cost and within a reasonable time, the primary data, samples, physical collections and other supporting materials created or gathered in the course of work under NSF grants. Grantees are expected to encourage and facilitate such sharing. Privileged or confidential information should be released only in a form that protects the privacy of individuals and subjects involved. General adjustments and, where essential, exceptions to this sharing expectation may be specified by the funding NSF Program or Division/Office for a particular field or discipline to safeguard the rights of individuals and subjects, the validity of results, or the integrity of collections or to accommodate the legitimate interest of investigators. A grantee or investigator also may request a particular adjustment or exception from the cognizant NSF Program Officer.

Golowasch/Nadim Labs: Primary data samples from electrophysiological experiments are the main “product” and will be shared freely upon request. This will be explicitly indicated in the publications derived from this work.

Severi Lab: This proposal will generate calcium imaging and physiology data, behavior tracking data, with and without optogenetic stimulation, and computational results, as well as routine documentation of laboratory procedures. We will document the production of data and laboratory procedures in a laboratory notebook that each lab member backs up on a web-based Google document (NJIT provides unlimited space on Google Drive).
Garnier Lab: Raw data will consist of videos (saved as .MP4 files) and still images (saved as .JPG files) of field and laboratory experiments. This data will require significant storage space and, therefore, possibly be compressed before storage, provided that it does not impair the extraction of observations and measurements from them. Raw data will also consist of manual observations and measurements that will be recorded in paper notebooks and electronic databases.

Access

Investigators and grantees are encouraged to share software and inventions created under the grant or otherwise make them or their products widely available and usable.

All data, metadata, and source code collected during the proposed project will be made publicly available as per NSF guidelines within 3 years of collection via published manuscripts, publicly available final reports to NSF, and/or from online data sharing systems, including GitHub, Google Drive, and the Open Science Framework (OSF).

Re-use, re-distribution, derivatives

NSF normally allows grantees to retain principal legal rights to intellectual property developed under NSF grants to provide incentives for development and dissemination of inventions, software and publications that can enhance their usefulness, accessibility and upkeep. Such incentives do not, however, reduce the responsibility that investigators and organizations have as members of the scientific and engineering community, to make results, data and collections available to other researchers.

We will reasonably facilitate the access by other researchers to software and data providing “physical samples” or methodologies derived from this research in response to their request and as reasonably quickly as possible. Reasonable exceptions may include work or applications that may need to be protected for intellectual and copyright reasons, in which case we will proceed in line with our Offices of Research and in accordance with the Bayh-Dole Act. All samples (if long-term preservation applies) and data will be kept for at least 3 years following the programs’ completion. University Environmental Health and Safety officers will appropriately dispose of the physical samples generated. Creative commons CC-ND-BY-SA will be used.

Archiving and preservation

NSF program management will implement these policies for dissemination and sharing of research results, in ways appropriate to field and circumstances, through the proposal review process; through award negotiations and conditions; and through appropriate support and incentives for data cleanup, documentation, dissemination, storage and the like.

Golowasch/Nadim Labs: The results of experimental manipulations and analysis will be preserved
permanently using NJIT-wide backup systems and locally in a data backup system located in each lab. The results will be carefully organized and indexed (both digitally and in appropriate laboratory notebooks) and preserved to allow for their reproducibility and verification. The experimental samples will be archived in standard formats derived from the acquisition software. Notebooks with summary descriptions of experiments and results and their location will be routinely kept and updated.

Severi Lab: Short-term storage will take place on imaging and tracking computers. All lab computers back up daily to a local Network Associated Storage unit, followed by a deep back-up to NJIT servers for long-term storage. Paper laboratory notebooks are kept as a hard copy backup for procedures and observations. We will organize and archive the data in the OSF system.

Garnier Lab: All data will be archived at 3 locations: (1) in the lab, (2) outside the lab on NJIT’s campus, and (3) off campus. Data will be stored in the lab on specialized RAID 6 storage arrays. On NJIT’s campus, data will be stored on the Andrew File System servers that are backed up daily. Off-campus data will be archived in GitHub repositories, including GitHub’s Large File Storage system, when necessary.

Data dissemination and sharing

Each NSF grant contains, as part of the grant terms, an article implementing dissemination and sharing of research results.

All data, metadata, and source code collected during the proposed project will be made publicly available as per NSF guidelines within 3 years of collection via published manuscripts, publicly available final reports to NSF, and/or from online data sharing systems, including GitHub, Google Drive, and the Open Science Framework (OSF), and STEM for Success institutional repository.
Planned Research Outputs

Text - "RTG: First Article (preliminary date)"

Articles for academic dissemination on journals

Audiovisual - "RTG Videos"

Videos showcasing the research projects

Planned research output details

<table>
<thead>
<tr>
<th>Title</th>
<th>Type</th>
<th>Anticipated release date</th>
<th>Initial access level</th>
<th>Intended repository(ies)</th>
<th>Anticipated file size</th>
<th>License</th>
<th>Metadata standard(s)</th>
<th>May contain sensitive data?</th>
<th>May contain PII?</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTG: First Article (preliminary date)</td>
<td>Text</td>
<td>2025-06-29</td>
<td>Open</td>
<td>ModelDB</td>
<td>5 MB</td>
<td>Creative Commons Attribution 4.0 International</td>
<td>Dublin Core</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RTG Videos</td>
<td>Audiovisual</td>
<td>2025-06-29</td>
<td>Open</td>
<td>Open Science Framework STEM for Success</td>
<td>600 MB</td>
<td>Creative Commons Attribution Non Commercial No Derivatives 4.0 International</td>
<td>Dublin Core</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>